

Week 1	Weekly learning ou
 The importance of units Sample units 	Students should be a 1.1.1 Physical quar

force.

components.

• Resolve a vector such as displacement, velocity and force into two perpendicular

3. Unit prefixes

Week 1

- 4. Scalars and vectors
- 5. Adding vectors vector triangles
- 6. Adding vectors resolving

Weekly learning outcomes	Student book links	Practical activity links
Students should be able to: 1.1.1 Physical quantities and units	• 1.1.1–5	
 Explain that some physical quantities consist of a numerical magnitude and a unit. 	OCR Scheme of	Work topic outlines
 Use correctly the named units listed in the specification as appropriate. 	G481 Mechanics	
 Use correctly the following prefixes and their symbols to indicate decimal sub-multiples or multiples of units: pico (p); nano (n); micro (µ); milli (m); centi (c); kilo (k); mega (M); giga (G); and tera (T). 	1.1.1 Physical Qua Unit, and SI 1.1.2 Scalars and vectors, and	antities and Units – Magnitude and prefixes vectors – Introduction, resultant I resolving vectors
Make suitable estimates of physical quantities.		
1.1.2 Scalars and vectors		
 Define scalar and vector quantities and give examples. 		
 Draw and use a vector triangle to determine the resultant of two coplanar vectors such as displacement, velocity and force. 		
 Calculate the resultant of two perpendicular vectors such as displacement, velocity and 		

OCR Physics	AS Teacher Support C
-------------	----------------------

Week 2	ek 2 Weekly learning outcomes		Practical activity links
 Week 2 1. Displacement and distance 2. Velocity and speed 3. Instantaneous and average speed 4. Acceleration 5. Displacement-time graphs 6. Velocity-time graphs 	 Weekly learning outcomes Students should be able to: 1.1.3 Kinematics Define <i>displacement, instantaneous speed, average speed, velocity</i> and <i>acceleration.</i> Select and use the relationships: average speed = distance/time; and acceleration = change in velocity/time to solve problems. Apply graphical methods to represent displacement, speed, velocity and acceleration. Determine velocity from the gradient of a displacement against time graph. 	Student book links • 1.1.6 • 1.1.7 OCR Scheme of V G481 Mechanics 1.1.3 Kinematics (Practical activity links
	 Determine displacement from the area under a velocity against time graph. Determine acceleration from the gradient of a velocity against time graph. 		

Week 3	Weekly learning outcomes	Student book links	Practical activity links
 Equations of motion for constant acceleration taken from definitions and from velocity-time graphs Examples of using the equations Falling under gravity Measuring <i>g</i> Independence of horizontal and vertical motion 	 Students should be able to: 1.1.4 Linear motion Derive the equations of motion for constant acceleration in a straight line from a velocity against time graph. Select and use the equations of motion for constant acceleration in a straight line. Apply the equations for constant acceleration in a straight line, including the motion of bodies falling in the Earth's uniform gravitational field without air resistance. Explain how experiments carried out by Galileo overturned Aristotle's ideas of motion. Describe an experiment to determine the acceleration of free fall, <i>g</i>, using a falling body. Apply the equations of constant acceleration to describe and explain the motion of an object due to a uniform velocity in one direction and a constant acceleration in a perpendicular direction. 	 1.1.8 1.1.9 1.1.10 OCR Scheme of V G481 Mechanics 1.1.4 Linear motio	 Practical 1: Projectile motion down ramp Practical 2: The speed of a water jet Practical 3: Measuring acceleration due to gravity

0	CF	? F	Phy	sics	AS Teacher	Support CE
---	----	-----	-----	------	------------	------------

Week 4	Weekly learning outcomes	Student book links	Practical activity links
 Revision of the effect of forces – balanced and unbalanced – and examples of forces Newton's second law: <i>F</i> = <i>ma</i> Definition of the newton Limitations of <i>F</i> = <i>ma</i> 	 Students should be able to: 1.2.1 Force Solve problems using the relationship: net force = mass x acceleration (<i>F</i> = <i>ma</i>). Appreciate that acceleration and the net force are always in the same direction. Define the <i>newton</i>. Apply the equations for constant acceleration and <i>F</i> = <i>ma</i> to analyse the motion of objects. Recall that according to the special theory of relativity, <i>F</i> = <i>ma</i> cannot be used for a particle travelling at very high speeds because its mass increases. 	• 1.2.1 OCR Scheme of V G481 Mechanics 1.2.1 Force (<i>F</i> = <i>r</i>	 Practical 4: Measuring acceleration Practical 5: Verifying <i>F</i> = <i>ma</i> Work topic outlines ma), and using <i>F</i> = <i>ma</i>

4

OCR Ph	YSICS AS Teacher Support (
--------	----------------------------

Week 5	Weekly learning outcomes	Student book links	Practical activity links
 Movement through fluids and drag The causes of drag and the factors affecting it Mass and weight Terminal velocity 	 Students should be able to: 1.2.2 Non-linear motion Explain that an object travelling in a fluid experiences a resistive or a frictional force known as drag. State the factors that affect the magnitude of the drag force. Determine the acceleration of an object in the presence of drag. State that the weight of an object is the gravitational force acting on the object. Select and use the relationship: weight = mass x acceleration of free fall (<i>W</i> = <i>mg</i>). Describe the motion of bodies falling in a uniform gravitational field with drag. Use and explain the term <i>terminal velocity</i>. 	1.2.2 OCR Scheme of V G481 Mechanics 1.2.2 Non-linear m	Work topic outlines

OCR Phy	Sics AS Teacher Support ()
---------	---------------------------	---

Week 6	Weekly learning outcomes	Student book links Practical activity links	
 Balanced forces – triangle Defining and finding centre of gravity Couples and torque Moments and the principle of moments Requirements for equilibrium 	 Students should be able to: 1.2.3 Equilibrium Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point on an object. State that the <i>centre of gravity</i> of an object is a point where the entire weight of an object appears to act. Describe a simple experiment to determine the centre of gravity of an object. Explain that a couple is a pair of forces that tends to produce rotation only. Define and apply the <i>torque of a couple</i>. Explain that both the net force and net moment on an extended object in equilibrium is zero. Apply the principle of moments to solve problems including the example of the human forearm. 	 1.2.3 1.2.4 1.2.5 OCR Scheme of V 1.2.3 Equilibrium ((Centre of g couple and f)	 Practical 6: To investigate the conditions for the equilibrium of three forces acting through a point Practical 7: Centre of gravity experiments Mork topic outlines Triangle of forces), Equilibrium ravity), and Equilibrium (Moments, torque)

6

Week 7	Weekly learning outcomes	Student book links	Practical activity links
 Definition of density and use of the equation Examples of density and methods for measuring it Definition of pressure and use of the equation Applications of pressure 	 Students should be able to: 1.2.3 Equilibrium Select and use the equation for density <i>ρ</i> = <i>m</i>/V. Select and use the equation for pressure – <i>p</i> = <i>F</i>/<i>A</i> where <i>F</i> is the force normal to the area <i>A</i>. 	 1.2.6 1.2.7 OCR Scheme of G481 Mechanics 1.2.2 Equilibrium (Density and the second	Work topic outlines

OCR Physics AS Teacher Support CD

. SE 9	OOD Dhuston
252.1	UGR PRIVICS AS Teacher S
28 11	

upport CD

1609-001

Week 8	Weekly learning outcomes	Student book links	Practical activity links
 Stopping distances – components Factors affecting stopping distances Car safety features – airbags and crumple zones Use of GPS 	 Students should be able to: 1.2.4 Car safety Define thinking distance, braking distance and stopping distance. Analyse and solve problems using the terms thinking distance, braking distance and stopping distance. Describe the factors that affect thinking distance and braking distance. Describe and explain how airbags, seat belts and crumple zones in cars reduce impact forces in accidents. Describe how airbags work – including the triggering mechanism. Describe how the trilateration technique is used in the global positioning system (GPS) for cars. 	 1.2.8 1.2.9 OCR Scheme of V G481 Mechanics 1.2.4 Car safety	Work topic outlines

	OCR Physics AS Teacher Su
24 11	

pport CD

Week 9	Weekly learning outcomes	Student book links	Practical activity links
 Forms of energy and the joule Energy transfers and transformations Work done by a force 	 Students should be able to: 1.3.1 Work and conservation of energy Define <i>work done</i> by a force. Define the <i>joule</i>. Calculate the work done by a force using W = Fx and W = Fx cos θ. State the principle of conservation of energy. Describe examples of energy in different forms, its conversion and conservation, and apply the principle of energy conservation to simple examples. Apply the idea that work done is equal to the transfer of energy to solve problems. 	 1.3.1 1.3.2 OCR Scheme of Total Scheme of Tota	Work topic outlines

9

Week 10	Weekly learning outcomes	Student book links	Practical activity links
 Work done and gravitational potential energy The kinetic energy equation Conversions from gravitational potential energy to kinetic energy and vice versa 	 Students should be able to: 1.3.2 Kinetic and potential energies Select and apply the equation for kinetic energy. Apply the definition of work done to derive the equation for the change in gravitational potential energy. Select and apply the equation for the change in gravitational potential energy near the Earth's surface <i>E</i>_p = <i>mgh</i>. Analyse problems where there is an exchange between gravitational potential energy and kinetic energy. Apply the principle of conservation of energy to determine the speed of an object falling in the Earth's gravitational field. 	• 1.3.3 OCR Scheme of V G481 Mechanics 1.3.2 Kinetic and p	Practical 8: Investigating the transfer of energy Work topic outlines ootential energies

Week 11	Weekly learning outcomes	Student book links	Practical activity links
 Power and the watt Conservation of energy and Sankey diagrams Energy efficiency 	 Students should be able to: 1.3.3 Power Define <i>power</i> as the rate of work done. Define the <i>watt</i>. Calculate power when solving problems. 	1.3.41.3.5	 Practical 9: An investigation of personal power
	• State that the efficiency of a device is always less than 100% because of heat losses.	OCR Scheme of	Work topic outlines
	 Select and apply the relationship for efficiency. Efficiency = (useful output energy/ total input energy) x 100%. Interpret and construct Sankey diagrams. 	G481 Mechanics 1.3.3 Power, and I	Power and efficiency

 Pairs of forces acting on objects Stretching springs and Hacks's law: Stretching springs and Hacks's law: Describe how deformation is caused by a 	• 1.3.6	Practical 8: Investigating the
Hooke's law3. The force constant k4. Energy stored in a stretched spring• Describe the behaviour of springs and wires in terms of force, extension, elastic limit, Hooke's law and the force constant – i.e. force per unit extension or compression.• Select and apply the equation $F = kx$, where k is the force constant of the spring or the wire.• Determine the area under a force against extension (or compression) graph to find the work done by the force.• Select and use the equations for elastic potential energy. $E = \frac{1}{2} Fx$ and $\frac{1}{2} kx^2$.	 1.3.7 OCR Scheme of V G481 Mechanics 1.3.4 Behaviour of and Behavio stored) 	 transfer of energy Practical 10: Investigating spring behaviour Vork topic outlines Springs and materials (Hooke's law), our of springs and materials (energy)

Weekly learning outcomes	Student book links	Practical activity links
 Students should be able to: 1.3.4 Behaviour of springs and materials Define and use the terms <i>stress</i>, <i>strain</i>, <i>the Young modulus</i> and <i>ultimate tensile strength</i> (<i>breaking stress</i>). 	1.3.81.3.9	 Practical 11: The Young modulus of copper Practical 12: Stretching a rubber band
Describe an experiment to determine the Young modulus of a metal in the form of a	OCR Scheme of Work topic outlines	
 wire. Define the terms <i>elastic deformation</i> and <i>plastic deformation</i> of a material. Describe the shapes of the stress against strain graphs for typical ductile, brittle and polymeric materials. 	G481 Mechanics 1.3.4 Behaviour o and Behavi modulus)	f Springs and materials (Hooke's law), our of springs and materials (Young
	 Weekly learning outcomes Students should be able to: 1.3.4 Behaviour of springs and materials Define and use the terms stress, strain, the Young modulus and ultimate tensile strength (breaking stress). Describe an experiment to determine the Young modulus of a metal in the form of a wire. Define the terms elastic deformation and plastic deformation of a material. Describe the shapes of the stress against strain graphs for typical ductile, brittle and polymeric materials. 	Weekly learning outcomesStudent book linksStudents should be able to:• 1.3.81.3.4 Behaviour of springs and materials• 1.3.8• Define and use the terms stress, strain, the Young modulus and ultimate tensile strength (breaking stress).• 1.3.9• Describe an experiment to determine the Young modulus of a metal in the form of a wire.• 0CR Scheme of• Define the terms elastic deformation and plastic deformation of a material.• 0CR Scheme of• Describe the shapes of the stress against strain graphs for typical ductile, brittle and polymeric materials.• 1.3.9

		OCR	Physi	ics as	Teacher	Suppor
--	--	-----	-------	---------------	---------	--------

t CD

Week 14	Weekly learning outcomes	Student book links	Practical activity links
 Charge and the electron Conductors, semiconductors and insulators Electric current and electron flow Kirchhoff's first law <i>I</i> = <i>Anev</i> The effect of changing the material on <i>n</i> and <i>v</i> 	 Students should be able to: 2.1.1 Charge and current Explain that electric current is a net flow of charged particles. Explain that electric current in a metal is due to the movement of electrons, whereas in an electrolyte the current is due to the movement of ions. Explain what is meant by conventional current and electron flow. Select and use the equation Q = 1 x t. Define the <i>coulomb</i>. Describe how an ammeter may be used to measure the current in a circuit. Recall and use the elementary charge e = 1.6 x 10⁻¹⁹ C. Describe Kirchhoff's first law and appreciate that this is a consequence of conservation of charge. State what is meant by the term <i>mean drift velocity</i> of charge carriers. Select and use the equation <i>I</i> = <i>Anev</i>. 	 2.1.1 2.1.2 2.1.3 OCR Scheme of V G482 Electrons, V 2.1.1 Current and	Work topic outlines Waves and Photons Charge

Week 15	Weekly learning outcomes	Student book links	Practical activity links
 Components and symbols Simple circuits Voltage the volt 	Students should be able to: 2.2.1 Circuit symbols	 2.2.1 2.2.2	 Practical 13: Energy in electrical circuits
 Voltage – the volt Voltage – e.m.f. and p.d. Measuring e.m.f. and p.d. in circuits 	• Recall and use appropriate circuit symbols as set out in: SI Units; Signs, Symbols and Abbreviations (ASE, 1981); and Signs, Symbols and Systematics (ASE, 1995).		
	 Interpret and draw circuit diagrams using these symbols. 	OCR Scheme of Work topic outlines	
	 2.2.2 E.m.f. and p.d. Define <i>potential difference</i> (p.d.). Select and use the equation W = VQ. Define the <i>volt</i>. Describe how a voltmeter may be used to determine the p.d. across a component. Define <i>electromotive force</i> (e.m.f.) of a source such as a cell or a power supply. Describe the difference between e.m.f. and p.d. in terms of energy transfer. 	OCR Scheme of Work topic outlines G482 Electrons, Waves and Photons 2.2.1 Circuit symbols, and 2.2.2 E.m.f. and p.d.	

CR PI	IYSICS AS Teacher Support CD	
-------	------------------------------	--

Week 16	Weekly learning outcomes	Student book links	Practical activity links
 Resistance and the ohm Ohm's law <i>I</i>-V characteristics – ohmic conductors (fixed resistor) <i>I</i>-V characteristics – non-ohmic conductors (filament lamp, diode) and the uses of diodes 	 Students should be able to: 2.2.3 Resistance Define resistance. Select and use the equation for resistance R = V/l. Define the ohm. State and use Ohm's law. 	 2.2.3 2.2.4 2.2.5 2.2.6 	 Practical 14: Investigations using a metal resistor Practical 15: Current voltage characteristics of electrical components Practical 16: Estimation of the thickness of a pencil line
 5. Defining resistivity and the resistivity equation 6. Effect of temperature on resistivity – metals 7. Effect of temperature on resistivity – semiconductors including thermistors 	 Describe the <i>I</i>-<i>V</i> characteristics of a resistor at constant temperature; a filament lamp; and a light-emitting diode (LED). Describe an experiment to obtain the <i>I</i>-<i>V</i> characteristics of a resistor at constant temperature; a filament lamp; and an LED. Describe the uses and benefits of using LEDs. 2.2.4 Resistivity Define resistivity of a material. Select and use the equation <i>R</i> = <i>ρL/A</i>. Describe how the resistivities of metals and semiconductors are affected by temperature. Describe how the resistance of a pure metal wire and of a negative temperature coefficient (NTC) thermister is affected by temperature. 	d re. callient	Work topic outlines Waves and Photons and

	ekly learning outcomes	links	Practical activity links
 Electrical work and power Electricity in the home and fuses Paying for electrical energy 	The kilowatt-hour (kWh) as a unit of energy. Calculate energy in KWh and the cost of this energy when solving problems; see HSW 6a.	Statem book links • 2.2.7 • 2.2.8 • 2.2.9 OCR Scheme of N G482 Electrons, N 2.2.5 Power	Practical activity links Nork topic outlines Naves and Photons

OCR Physics AS Teacher Support CD

|--|

Week 20	Weekly learning outcomes	Student book links	Practical activity links
 Week 20 The basic operation of a potential divider The potential divider equation LDRs and thermistors in potential dividers Using potential dividers in dataloggers 	 Weekly learning outcomes Students should be able to: 2.3.2 Practical circuits Draw a simple potential divider circuit. Explain how a potential divider circuit can be used to produce a variable p.d. Recall and use the potential divider equation, V₁ = R₁/R₁ + R₂ × V_{in} (where V₁ is the p.d. across R₁). Describe how the resistance of a light-dependent resistor (LDR) depends on the intensity of light. Describe the advantages of using dataloggers to monitor physical changes; see HSW 3. 	Iinks • 2.3.5 OCR Scheme of N G482 Electrons, N 2.3.2 Practical circle	 Practical activity links Practical 18: Calibrating a thermistor or a diode as a thermometer Practical 19: The potentiometer – potential divider experiments.

Week 21	Weekly learning outcomes	Student book links	Practical activity links
 Wave types Wave characteristics The wave equation, <i>v</i> = <i>f</i>λ Wave experiments 	 Students should be able to: 2.4.1 Wave motion Describe and distinguish between progressive longitudinal and transverse waves. Define and use the terms displacement, amplitude, wavelength, period, phase difference, frequency and speed of a wave. Derive from the definitions of speed, frequency and wavelength, the wave equation v = fλ. Select and use the wave equation v = fλ. Explain what is meant by reflection, refraction and diffraction of waves such as sound and light. 	 2.4.1 2.4.2 2.4.3 2.4.4 OCR Scheme of G482 Electrons, 2.4.1 Wave motion	 Practical 20: The speed of sound in air Practical 21: Investigating some properties of electromagnetic waves using 1 GHz radio waves Work topic outlines Waves and Photons

OCR Physics AS Teacher Sup	port
----------------------------	------

Week 22	Weekly learning outcomes	Student book links	Practical activity links
 Electromagnetic waves and the electromagnetic spectrum Uses and dangers of different parts of the spectrum Polarisation Malus' law 	 Students should be able to: 2.4.2 Electromagnetic waves State typical values for the wavelengths of the different regions of the electromagnetic spectrum from radio waves to γ-rays. State that all electromagnetic waves travel at the same speed in a vacuum. Describe differences and similarities between different regions of the electromagnetic spectrum. Describe some of the practical uses of electromagnetic waves. Describe the characteristics and dangers of UV-A, UV-B and UV-C radiation and explain the role of sunscreen, see HSW 6a. Explain what is meant by plane-polarised waves and understand the polarisation of electromagnetic waves. Explain that polarisation is a phenomenon associated with transverse waves only. State that light is partially polarised on reflection. Recall and apply Malus' law for transmitted intensity of light from a polarising filter. 	 2.4.5 2.4.6 OCR Scheme of G482 Electrons, V 2.4.2 Electromagn	Work topic outlines Waves and Photons hetic waves, and Polarisation

,	R	Ph	iysi	CS AS Teacher Support (CD
---	---	----	------	-------------------------	----

Week 23	Weekly learning outcomes	Student book links	Practical activity links
 Wave intensity Superposition of waves Interference – constructive and destructive Phase and path difference causing interference patters Two-source interference for sound and microwaves 	 Students should be able to: 2.4.3 Interference State and use the principle of superposition of waves. Apply graphical methods to illustrate the principle of superposition. Explain the terms <i>interference, coherence, path difference</i> and <i>phase difference</i>. State what is meant by constructive interference and destructive interference. Describe experiments that demonstrate two-source interference using sound, light and microwaves. Describe constructive interference and destructive interference and destructive interference and destructive interference and destructive interference and phase difference. Describe constructive interference and destructive interference and phase difference. Use the relationships: intensity = power/cross-sectional area and intensity is proportional to amplitude². 	2.4.7 OCR Scheme of G482 Electrons, V 2.4.3 Interference	 Practical 22: Wave superposition experiments 1 Practical 23: Young's experiment to observe the interference of light Work topic outlines Waves and Photons

OCR Physics AS Teacher Support

Week 24 W	Veekly learning outcomes	Student book links	Practical activity links
 Interference patterns with light Young's double-slit experiment <i>λ</i> =ax/D Diffraction gratings 	 Students should be able to: 2.4.3 Interference Describe the Young double-slit experiment and explain how it is a classical confirmation of the wave nature of light, see HSW 1. Select and use the equation λ = ax/D for electromagnetic waves. Describe an experiment to determine the wavelength of monochromatic light using a laser and a double slit. Describe the use of a diffraction grating to determine the wavelength of light (the structure and use of a spectrometer are not required). Select and use the equation dsinθ = nλ. Explain the advantages of using multiple slits in an experiment to find the wavelength of light. 	 2.4.8 2.4.9 OCR Scheme of G482 Electrons, V 2.4.3 Interference	 Practical 25: Using a diffraction grating to measure the wavelength of light. Practical 24: Investigating Young's fringes Work topic outlines Waves and Photons

OCR	Physics	AS Teacher Support
UGK	Physics	AS Teacher Support

Week 25	Weekly learning outcomes	Student book links	Practical activity links
 Forming stationary waves Stationary waves and progressive waves The fundamental frequency and harmonics Finding the wavelength from a stationary wave Stationary waves on strings Stationary waves in pipes 	 Students should be able to: 2.4.4 Stationary waves Explain the formation of stationary (standing) waves using graphical methods. Describe the similarities and differences between progressive and stationary waves. Define the terms <i>nodes</i> and <i>antinodes</i>. Describe experiments to demonstrate stationary waves using microwaves, stretched strings and air columns. Determine the standing wave patterns for stretched string and air columns in closed and open pipes. Use the equation: separation between adjacent nodes (or antinodes) = λ/2. Define and use the terms fundamental mode of vibration and harmonics. Determine the speed of sound in air from measurements on stationary waves in a pipe closed at one end. 	 2.4.10 2.4.11 2.4.12 OCR Scheme of G482 Electrons, No. 2.4.4 Stationary was	 Practical 26: Investigating stationary waves on a string Practical 27: Observing a resonance effect Work topic outlines Waves and Photons aves

 1. The photon and <i>E</i> = <i>hf</i> 2. The electronvolt 3. Measuring Planck's constant Students should be able to: 2.5.1 Energy of a photon Describe the particulate nature (photon model) of electromagnetic radiation. State that a photon is a quantum of energy of electromagnetic radiation. Select and use the equations for the energy of a photon: <i>E</i> = <i>hf</i> and <i>E</i> = <i>hc/λ</i>. Define and use the electronvolt (eV) as a unit of energy. Use the transfer equation eV = ½ mv² for electrons and other charged particles. Describe an experiment using LEDs to estimate the Planck constant <i>h</i> using the equation <i>eV</i> = <i>hc/λ</i> (no knowledge of semiconductor theory is expected). 	cal 28: An estimate of the k constant using LEDs

	ACR Physics AS Teacher Sunnart CD
2.41	

Week 27		Weekly learning outcomes	Student book links	Practical activity links
1.	Observations from the	Students should be able to:	• 2.5.2	G482 Electrons, Waves and
	photoelectric effect	2.5.2 The photoelectric effect	• 2.5.3	Photons
2.	Explaining the photoelectric effect and its implications for the wave nature of	 Describe and explain the phenomenon of the photoelectric effect. 		2.5.2 The photoelectric effect
	electromagnetic radiation	• Explain that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, whereas phenomena such as interference and diffraction provide evidence for a wave nature.		
3.	 B. Energy changes in the photoelectric effect Einstein's photoelectric equation 		OCR Scheme of	Work topic outlines
4.			G482 Electrons, N	Waves and Photons
5.	Photoelectric current	 Define and use the terms work function and threshold frequency. 	2.5.2 The photoelectric effect	
		 State that energy is conserved when a photon interacts with an electron. 		
		 Select, explain and use Einstein's photoelectric equation <i>hf</i> = φ + <i>KE_{max}</i>. 		
		• Explain why the maximum kinetic energy of the electrons is independent of intensity and why the photoelectric current in a photocell circuit is proportional to intensity of the incident radiation.		

OCR Physics AS Teacher Support CD

Week 28	Weekly learning outcomes	Student book links	Practical activity links
 Week 28 1. The electron as a particle 2. Electron diffraction 3. The de Broglie equation 4. Applications of electron diffraction 	 Students should be able to: 2.5.3 Wave-particle duality Explain electron diffraction as evidence for the wave nature of particles such as electrons. Explain that electrons travelling through polycrystalline graphite will be diffracted by the atoms and the spacing between the atoms. Select and apply the de Broglie equation λ = h/mv. Explain that the diffraction of electrons by matter can be used to determine the arrangement of atoms and the size of nuclei. 	links • 2.5.4 OCR Scheme of G482 Electrons, V 2.5.3 Wave-partic	Work topic outlines Waves and Photons He duality

Weekly learning outcomes	Student book links	Practical activity links
 Students should be able to: 2.5.4 Energy levels in atoms Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms – i.e. in a gas discharge lamp. Describe the origin of emission and absorption line spectra. Use the relationships <i>hf</i> = <i>E</i>₁ – <i>E</i>₂ and <i>hc</i>/<i>λ</i> = <i>E</i>₁ – <i>E</i>₂. 	 2.5.5 2.5.6 OCR Scheme of G482 Electrons, V 2.5.4 Energy level	Work topic outlines Waves and Photons s in atoms
	 Weekly learning outcomes Students should be able to: 2.5.4 Energy levels in atoms Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms – i.e. in a gas discharge lamp. Describe the origin of emission and absorption line spectra. Use the relationships <i>hf</i> = <i>E</i>₁ – <i>E</i>₂ and <i>hc</i>/ <i>λ</i> = <i>E</i>₁ – <i>E</i>₂. 	Weekly learning outcomesStudent book linksStudents should be able to: $2.5.5$ 2.5.4 Energy levels in atoms • $2.5.5$ • Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms – i.e. in a gas discharge lamp.• $2.5.6$ • Describe the origin of emission and absorption line spectra.• OCR Scheme of G482 Electrons, V 2.5.4 Energy level• Use the relationships $hf = E_1 - E_2$ and $hc/\lambda = E_1 - E_2$.• CR Scheme of G482 Electrons, V 2.5.4 Energy level

OCR Physics AS Teacher Support CD